Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Inflammopharmacology ; 30(3): 799-809, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1872585

ABSTRACT

The existing pandemic viral infection caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) leads to coronavirus disease 2019 (Covid-19). SARS-CoV-2 exploits angiotensin-converting enzyme 2 (ACE2) as an entry-point into affected cells and down-regulation of ACE2 by this virus triggers the release of pro-inflammatory cytokines and up-regulation of angiotensin II. These changes may lead to hypercytokinemia and the development of cytokine storm with the development of acute lung injury and acute respiratory distress syndrome. Different repurposed had been in use in the management of Covid-19, one of these agents is pentoxifylline (PTX) which has anti-inflammatory and antioxidant properties. Therefore, the objective of the present mini-review is to highlight the potential role of PTX in Covid-19 regarding its anti-inflammatory and antioxidant effects. PTX is a non-selective phosphodiesterase inhibitor that increases intracellular cyclic adenosine monophosphate which stimulates protein kinase A and inhibits leukotriene and tumor necrosis factor. PTX has antiviral, anti-inflammatory and immunomodulatory effects, thus it may attenuate SARS-CoV-2-induced hyperinflammation and related complications. As well, PTX can reduce hyper-viscosity and coagulopathy in Covid-19 through increasing red blood cell deformability and inhibition of platelet aggregations. In conclusion, PTX is a non-selective phosphodiesterase drug, that has anti-inflammatory and antioxidant effects thereby can reduce SARS-CoV-2 infection-hyperinflammation and oxidative stress. Besides, PTX improves red blood cells (RBCs) deformability and reduces blood viscosity so can mitigate Covid-19-induced hyper-viscosity and RBCs hyper-aggregation which is linked with the development of coagulopathy. Taken together, PTX seems to be an effective agent against Covid-19 severity.


Subject(s)
COVID-19 Drug Treatment , Pentoxifylline , Angiotensin-Converting Enzyme 2 , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antioxidants/pharmacology , Antioxidants/therapeutic use , Cytokine Release Syndrome , Humans , Pentoxifylline/pharmacology , Pentoxifylline/therapeutic use , SARS-CoV-2
2.
Molecules ; 26(12)2021 Jun 14.
Article in English | MEDLINE | ID: covidwho-1282537

ABSTRACT

Antimicrobial resistance is a major healthcare threat globally. Xanthines, including caffeine and pentoxifylline, are attractive candidates for drug repurposing, given their well-established safety and pharmacological profiles. This study aimed to analyze potential interactions between xanthines and aromatic antibiotics (i.e., tetracycline and ciprofloxacin), and their impact on antibiotic antibacterial activity. UV-vis spectroscopy, statistical-thermodynamical modeling, and isothermal titration calorimetry were used to quantitatively evaluate xanthine-antibiotic interactions. The antibacterial profiles of xanthines, and xanthine-antibiotic mixtures, towards important human pathogens Staphylococcus aureus, Enterococcus faecium, Escherichia coli, Acinetobacter baumannii, Klebsiella pneumoniae, and Enterobacter cloacae were examined. Caffeine and pentoxifylline directly interact with ciprofloxacin and tetracycline, with neighborhood association constant values of 15.8-45.6 M-1 and enthalpy change values up to -4 kJ·M-1. Caffeine, used in mixtures with tested antibiotics, enhanced their antibacterial activity in most pathogens tested. However, antagonistic effects of caffeine were also observed, but only with ciprofloxacin toward Gram-positive pathogens. Xanthines interact with aromatic antibiotics at the molecular and in vitro antibacterial activity level. Given considerable exposure to caffeine and pentoxifylline, these interactions might be relevant for the effectiveness of antibacterial pharmacotherapy, and may help to identify optimal treatment regimens in the era of multidrug resistance.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Caffeine/pharmacology , Heterocyclic Compounds/chemistry , Pentoxifylline/pharmacology , Anti-Bacterial Agents/chemistry , Bacteria/growth & development , Caffeine/chemistry , Central Nervous System Stimulants/chemistry , Central Nervous System Stimulants/pharmacology , Drug Interactions , Microbial Sensitivity Tests , Pentoxifylline/chemistry , Phosphodiesterase Inhibitors/chemistry , Phosphodiesterase Inhibitors/pharmacology
3.
Int Immunopharmacol ; 90: 107209, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1065217

ABSTRACT

We have previously hypothesized that pentoxifylline could be beneficial for the treatment of COVID-19 given its potential to restore the immune response equilibrium, reduce the impact of the disease on the endothelium and alveolar epithelial cells, and improve the circulatory function.Serum lactate dehydrogenase (LDH) and lymphocyte count are accessible biomarkers that correlate with the severity of COVID-19, the need for hospitalization, and mortality, reflecting the host immune response's contribution to the seriousness of SARS-CoV-2 infection. We carried out this external pilot study on 38 patients with moderate and severe COVID-19 to test the effect pentoxifylline on parameters such as LDH, lymphocyte count, days of hospitalization, mortality, and proportion of patients requiring intubation. Twenty-six patients were randomized to receive 400 mg of pentoxifylline t.i.d. plus standard therapy (pentoxifylline group), while the rest received the standard treatment (control group). Linear regression models were built for statistically significant parameters. Pentoxifylline treatment was associated with a 64.25% increase (CI95% 11.83, 116.68) in lymphocyte count and a 29.61% decrease (CI95% 15.11, 44.10) in serum LDH. Although a trend towards reduced days of hospitalization, mortality, and proportion of patients requiring intubation was observed, no statistically significant difference was found for these parameters. Our findings open the possibility of pentoxifylline being repositioned as a drug for COVID-19 treatment with the advantages of a proven safety profile, availability, and no risk of immunosuppression; however, this evidence needs to be confirmed in a pragmatic randomized controlled trial.


Subject(s)
COVID-19 Drug Treatment , Pentoxifylline/therapeutic use , SARS-CoV-2 , Aged , Biomarkers/blood , COVID-19/blood , COVID-19/immunology , Drug Repositioning , Female , Humans , L-Lactate Dehydrogenase/blood , Lymphocyte Count , Male , Middle Aged , Pentoxifylline/pharmacology , Pilot Projects
4.
Eur J Pharmacol ; 887: 173561, 2020 Nov 15.
Article in English | MEDLINE | ID: covidwho-996861

ABSTRACT

COVID-19 pandemic presents an unprecedented challenge to identify effective drugs for treatment. Despite multiple clinical trials using different agents, there is still a lack of specific treatment for COVID-19. Having the potential role in suppressing inflammation, immune modulation, antiviral and improving respiratory symptoms, this review discusses the potential role of methylxanthine drugs like pentoxifylline and caffeine in the management of COVID-19 patients. COVID-19 pathogenesis for clinical features like severe pneumonia, acute lung injury (ALI) / acute respiratory distress syndrome (ARDS), and multi-organ failures are excessive inflammation, oxidation, and cytokine storm by the exaggerated immune response. Drugs like pentoxifylline have already shown improvement of the symptoms of ARDS and caffeine has been in clinical use for decades to treat apnea of prematurity (AOP) in preterm infants and improve respiratory function. Pentoxifylline is well-known anti-inflammatory and anti-oxidative molecules that have already shown to suppress Tumor Necrosis Factor (TNF-α) as well as other inflammatory cytokines in pulmonary diseases, and this may be beneficial for better clinical outcomes in COVID-19 patients. Pentoxifylline enhances blood flow, improves microcirculation and tissue oxygenation, and caffeine also efficiently improves tissue oxygenation, asthma, decreases pulmonary hypertension and an effective analgesic. There are significant shreds of evidence that proved the properties of pentoxifylline and caffeine against virus-related diseases as well. Along with the aforementioned evidences and high safety profiles, both pentoxifylline and caffeine offer a glimpse of considerations for future use as a potential adjuvant to COVID-19 treatment. However, additional clinical studies are required to confirm this speculation.


Subject(s)
Coronavirus Infections/drug therapy , Pandemics , Pentoxifylline/therapeutic use , Pneumonia, Viral/drug therapy , Xanthines/pharmacology , Xanthines/therapeutic use , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , COVID-19 , Caffeine/pharmacology , Caffeine/therapeutic use , Coronavirus Infections/complications , Humans , Infant, Newborn , Infant, Premature , Inflammation/drug therapy , Inflammation/etiology , Pentoxifylline/pharmacology , Pneumonia, Viral/complications , COVID-19 Drug Treatment
5.
Pharmacol Res Perspect ; 8(4): e00631, 2020 08.
Article in English | MEDLINE | ID: covidwho-676220

ABSTRACT

We propose a new hypothesis that the established drug pentoxifylline deserves attention as a potential repurposed therapeutic for COVID-19. Pentoxifylline is an immunomodulator with anti-inflammatory properties. It is a nonselective phosphodiesterase inhibitor and through Adenosine A2A Receptor-mediated pathways reduces tumor necrosis factor alpha, interleukin 1, interleukin 6, and interferon gamma and may act to reduce tissue damage during the cytokine storm host response to SARS-CoV-2 infection. This agent has been used clinically for many years and has a favorable profile of safety and tolerability. Pre-clinical data support pentoxifylline as effective in cytokine-driven lung damage. Clinical studies of pentoxifylline in radiation and cytokine-induced lung damage in humans are positive and consistent with anti-inflammatory efficacy. Pentoxifylline is a readily available, off-patent and inexpensive drug, suitable for large-scale use including in resource-limited countries. Current trials of therapeutics are largely focused on the inhibition of viral processes. We advocate urgent randomized trials of pentoxifylline for COVID-19 as a complementary approach to target the host responses.


Subject(s)
Betacoronavirus , Coronavirus Infections/drug therapy , Pentoxifylline/therapeutic use , Phosphodiesterase Inhibitors/therapeutic use , Pneumonia, Viral/drug therapy , COVID-19 , Humans , Pandemics , Pentoxifylline/pharmacology , Research Design , SARS-CoV-2 , Tumor Necrosis Factor-alpha/blood , Tumor Necrosis Factor-alpha/physiology , COVID-19 Drug Treatment
6.
Eur Rev Med Pharmacol Sci ; 24(13): 7494-7496, 2020 07.
Article in English | MEDLINE | ID: covidwho-676179

ABSTRACT

Although most patients with coronavirus disease 2019 (COVID-19) have a good prognosis, in some cases, the disease progresses rapidly, and the mortality rate is high. Some evidence suggests that infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) produces a 'cytokine storm', which is related to acute respiratory distress syndrome or multi-organ dysfunction leading to physiological deterioration and death. It is important to highlight the state of hypercoagulability that can be triggered, involving microvascular thrombosis and vascular occlusive events, which are relevant to such poor outcomes. At present, no specific antiviral drug or vaccine is available for SARS-CoV-2 infection, and current research is aimed at preventing and mitigating damage to the target organs, mainly the lungs. In seeking therapies for patients with COVID-19, immunomodulators, cytokine antagonists and early anti-coagulation therapies have been tested in attempts to reduce the mortality rate. Pentoxifylline, a non-specific phosphodiesterase inhibitor widely used to improve the rheological properties of blood, has beneficial anti-inflammatory properties and can significantly reduce the serum levels of pro-inflammatory cytokines such as interleukin (IL)-6, IL-1, tumour necrosis factor-alpha, C-reactive protein and other immunoregulators. It has also been found to exert anti-thrombotic, antioxidant and anti-fibrogenic actions. These properties could help to prevent or mitigate the inflammatory response and hypercoagulability that develop with SARS-CoV-2 infection, decreasing multi-organ dysfunction manifesting primarily as acute lung injury.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , COVID-19 , Fibrinolytic Agents/pharmacology , Humans , Microbial Sensitivity Tests , Pandemics , Pentoxifylline/pharmacology , SARS-CoV-2
7.
Med Hypotheses ; 144: 109988, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-591493

ABSTRACT

Pentoxifylline (PTX) is a phosphodiesterase inhibitor that increases cyclic adenosine monophosphate levels, which in turn activate protein kinase, leading to a reduction in the synthesis of proinflammatory cytokines to ultimately influence the renin-angiotensin system (RAS) in vitro by inhibiting angiotensin 1 receptor (AT1R) expression. The rheological, anti-inflammatory, and renin-angiotensin axis properties of PTX highlight this drug as a therapeutic treatment alternative for patients with COVID-19 by helping reduce the production of the inflammatory cytokines without deleterious effects on the immune system to delay viral clearance. Moreover, PTX can restore the balance of the immune response, reduce damage to the endothelium and alveolar epithelial cells, improve circulation, and prevent microvascular thrombosis. There is further evidence that PTX can improve ventilatory parameters. Therefore, we propose repositioning PTX in the treatment of COVID-19. The main advantage of repositioning PTX is that it is an affordable drug that is already available worldwide with an established safety profile, further offering the possibility of immediately analysing the result of its use and associated success rates. Another advantage is that PTX selectively reduces the concentration of TNF-α mRNA in cells, which, in the case of an acute infectious state such as COVID-19, would seem to offer a more strategic approach.


Subject(s)
COVID-19 Drug Treatment , Drug Repositioning , Immunologic Factors/therapeutic use , Pandemics , Pentoxifylline/therapeutic use , Renin-Angiotensin System/drug effects , SARS-CoV-2/physiology , Alveolar Epithelial Cells/drug effects , Angiotensin II/physiology , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/epidemiology , COVID-19/immunology , COVID-19/physiopathology , Complement Activation/drug effects , Cytokines/biosynthesis , Cytokines/genetics , Disease Models, Animal , Endothelial Cells/drug effects , Gene Expression Regulation/drug effects , Humans , Immunologic Factors/pharmacology , Inflammation , Lymphocyte Subsets/drug effects , Microcirculation/drug effects , Oxidative Stress , Pentoxifylline/pharmacology , Rats , Receptors, Virus/metabolism , Renin-Angiotensin System/physiology , Signal Transduction/drug effects , Venous Thromboembolism/etiology , Venous Thromboembolism/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL